Carbon Nanotube Devices Christofer Hierold Pdf

Recognizing the artifice ways to get this books carbon nanotube devices christofer hierold pdf is additionally useful. You have remained in right site to start getting this info. Get the carbon nanotube devices christofer hierold pdf associate that we offer here and check out the link. You could buy lead carbon nanotube devices christofer hierold pdf or acquire it as soon as feasible. You could speedily download this carbon nanotube devices christofer hierold pdf after getting deal. So, taking into account you require the book swiftly, you can straight get it. Its as a result unconditionally simple and consequently fats, isnt it? You have to favor to in this tell

Frontiers of Graphene and Carbon Nanotubes Kazuhiro Matsumoto 2015-03-05 This book focuses on carbon nanotubes and graphene as representatives of nano-carbon materials, and describes the growth of new technology and applications of new devices. As new devices and as new materials, nano-carbon materials are expected to be world pioneers that could not have been realized with conventional semiconductor materials, and as those that extend the limits of conventional semiconductor performance. This book introduces the latest achievements of nano-carbon devices, processes, and technology growth. It is anticipated that these studies will also be pioneers in the development of future research of nano-carbon devices and materials. This book consists of 18 chapters. Chapters 1 to 8 describe new device applications and new growth methods of graphene, and Chapters 9 to 18, those of carbon nanotubes. It is expected that by increasing the advantages and overcoming the weak points of nanocarbon materials, a new world that cannot be achieved with conventional materials will be greatly expanded. We strongly hope this book contributes to its development.

International Conference for Innovation in Biomedical Engineering and Life Sciences Fatimah Ibrahim 2015-11-26 This volume presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences.

Converging Technologies for Improving Human Performance Mihail C. Roco 2013-04-17 M. C. Roco and W.S. Bainbridge In the early decades of the 21st century, concentrated efforts can unify science based on the unity of nature, thereby advancing the combination of nanotechnology, biotechnology, information technology, and new technologies based in cognitive science. With proper attention to ethical issues and societal needs, converging in human abilities, societal technologies could achieve a tremendous improvement outcomes, the nation’s productivity, and the quality of life. This is a broad, cross cutting, emerging and timely opportunity of interest to individuals, society and humanity in the long term. The phrase “convergent technologies” refers to the synergistic combination of four major “NBIC” (nano-bio-info-cogno) provinces of science and technology, each of which is currently progressing at a rapid rate: (a) nanoscience and nanotechnology; (b) biotechnology and biomedicine, including genetic engineering; (c) information technology, including advanced computing and communications; (d) cognitive science, including cognitive neuroscience. Timely and Broad Opportunity. Convergence of diverse technologies is based on material unity at the nanoscale and on technology integration from that scale.

LIGA and Its Applications Volker Saile 2009-01-07 Covering technological aspects as well as the suitability and applicability of various kinds of uses, this handbook shows optimization strategies, techniques and assembly pathways to achieve the combination of complex, even three-dimensional structures with simple manufacturing steps. The authors provide information on markets, commercialization opportunities and aspects of mass or large-scale production as well as design tools, experimental techniques, novel materials, and ideas for future improvements. Not only do they weigh up cost versus quantity, they also consider CMOS and LIGA strategies. This book is of interest to physicists, electronics engineers, materials scientists, institutional and industrial libraries as well as graduate students of the relevant disciplines.

Triboelectric Nanogenerators Zhong Lin Wang 2016-08-17 This book introduces an innovative and high-efficiency technology for mechanical energy
An Introduction to Graphene and Carbon Nanotubes

John Edward Proctor 2020-06-30 Carbon nanotubes and graphene have been the subject of intense scientific research since their relatively recent discoveries. This book introduces the reader to the science behind these rapidly developing fields, and covers both the fundamentals and latest advances. Uniquely, this book covers the topics in a pedagogical manner suitable for undergraduate students. The book also uses the simple systems of nanotubes and graphene as models to teach concepts such as molecular orbital theory, tight binding theory and the Laue treatment of diffraction. Suitable for undergraduate students with a working knowledge of basic quantum mechanics and for postgraduate researchers commencing their studies into the field, this book will equip the reader to critically evaluate the physical properties and potential for applications of graphene and carbon nanotubes. Features. A new textbook devoted to both graphene and carbon nanotubes, suitable for upper-level undergraduate students as well as postgraduate students. Provides a thorough coverage of the basic concepts in the field allowing students to understand the latest advances. Provides wide-ranging coverage including the structure of graphene and carbon nanotubes, their fundamental properties, ways to characterise them and their potential applications. A suitable accompanying text for many postgraduate and undergraduate courses in physics, chemistry, engineering and materials science. A manual of homework problems and solutions is available to accompany the text. Book jacket.

Nano-Tera.ch Anil Leblebici 2018-10-26 This book presents the overall vision and research outcomes of Nano-Tera.ch, which is a landmark Swiss federal program to advance engineering system and device technologies with applications to Health and the Environment, including Smart Energy generation and consumption. The authors discuss this unprecedented nation-wide program, with a lifetime of almost 10 years and a public funding of more than 120 MCHF, which helped to position Switzerland at the forefront of the research on multi-scale engineering of complex systems and networks, and strongly impacted the Swiss landscape in Engineering Sciences.

Springer Handbook of Nanotechnology Bharat Bhushan 2004-01-19 This major work has established itself as the definitive reference in the nanoscience and nanotechnology area in one volume. It presents nanostructures, micro/nanofabrication, and micro/nanodevices. Special emphasis is on scanning probe microscopy, nanotribology and nanomechanics, molecularly thick films, industrial applications and microdevice reliability, and on social aspects. Reflecting further developments, the new edition has grown from six to eight parts. The latest information is added to fields such as biotechnology, nanorobotics, and NEMS/MEMS reliability. This classic reference book is orchestrated by a highly experienced editor and written by a team of distinguished experts for those learning about the field of nanotechnology.

Principles of Chemical Sensors Jiri Janata 2010-03-14 Do not learn the tricks of the trade, learn the trade I started teaching graduate courses in chemical sensors in early 1980s, first as a one-quarter (30 h) class then as a semester course and also as several intensive, 4-5-day courses. Later I organized my lecture notes into the first edition of this book, which was published by Plenum in 1989 under the title Principles of Chemical Sensors. I started working on the second edition in 2006. The new edition of Principles of Chemical Sensors is a teaching book, not a textbook. Let me explain the difference. Textbooks usually cover some more or less narrow subject in maximum depth. Such an approach is not possible here. The subject of chemical sensors is much too broad, spanning many aspects of physical and analytical chemistry, biochemistry, materials science, solid-state physics, optics, device fabrication, electrical engine-ing, statistical analysis, and so on. The challenge for me has been to present uniform logical coverage of such a large area. In spite of its relatively shallow depth, it is intended as a graduate course. At its present state the amount of material is more than can be covered in a one-semester course (45 h). Two one-quarter courses would be more appropriate. Because of the breadth of the material, the sensor course has a somewhat unexpected but, it is hoped, beneficial effect.

Carbon Nanotubes and Graphene Kazuyoshi Tanaka 2014-07-10 Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much
and nanotechnology, as well as their applications in biosensing and bioanalysis combined with nanoscience interactions, and magnetic detection. The book details fluorescence, chemiluminescence, antibody-antigen sensing principles, including electrochemical detection, molecules, etc., but also illustrates a wide range of including carbon nanotubes, carbon nanofiber, engineering methods. It not only covers the important detection principles, sensing mechanisms, and device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Micro Energy Harvesting Danick Briand 2015-06-22 With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

NanoBiosensing Huangxian Ju 2011-08-18 This book will cover the full scope of nanobiosensing, which combines the newest research results in the cross-disciplines of chemistry, biology, and materials science with biosensing and bioanalysis to develop novel detection principles, sensing mechanisms, and device engineering methods. It not only covers the important types of nanomaterials for biosensing applications, including carbon nanotubes, carbon nanofiber, quantum dots, fullerene, fluorescent and biological molecules, etc., but also illustrates a wide range of sensing principles, including electrochemical detection, fluorescence, chemiluminescence, antibody-antigen interactions, and magnetic detection. The book details novel developments in the methodology and devices of biosensing and bioanalysis combined with nanoscience and nanotechnology, as well as their applications in biomedicine and environmental monitoring. Furthermore, the reported works on the application and biofunction of nanoparticles have attracted extensive attention and interest, thus they are of particular interest to readers. The reader will obtain a rich survey of nanobiosensing technology, including the principles and application of biosensing, the design and biofunctionalization of bionanomaterials, as well as the methodology to develop biosensing devices and bioanalytical systems.

Bulk Metallic Glasses C. Suryanarayana 2017-11-22 Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.

Electronic Noise and Fluctuations in Solids Sh. Kogan 2008-07-31 This book looks at the physics of electronic fluctuations (noise) in solids. The author emphasizes many fundamental experiments that have become classics: physical mechanisms of fluctuations, and the nature and magnitude of noise. He also includes the most comprehensive and complete review of flicker (1/f) noise in the literature. It will be useful to graduate students and researchers in physics and electronic engineering, and especially those carrying out research in the fields of noise phenomena and highly sensitive electronic devices--detectors, electronic devices for low-noise amplifiers, and quantum magnetometers (SQUIDS).

Stereoelectronic Effects Igor V. Alabugin 2016-10-17 Stereoelectronic Effects illustrates the utility of stereoelectronic concepts using structure and reactivity of organic molecules An advanced textbook that provides an up-to-date overview of the field, starting from the fundamental
principles Presents a large selection of modern examples of stereoelectronic effects in organic reactivity Shows practical applications of stereoelectronic effects in asymmetric catalysis, photochemical processes, bioorganic chemistry and biochemistry, inorganic and organometallic reactivity, supramolecular chemistry and materials science

Reliability of MEMS Osamu Tabata 2014-07-21 This first book to cover exclusively and in detail the principles, tools and methods for determining the reliability of microelectromechanical materials, components and devices covers both component materials as well as entire MEMS devices. Divided into two major parts, following a general introductory chapter to reliability issues, the first part looks at the mechanical properties of the materials used in MEMS, explaining in detail the necessary measuring technologies -- nanoindenters, bulge methods, bending tests, tensile tests, and others. Part Two treats the actual devices, organized by important device categories such as pressure sensors, inertial sensors, RF MEMS, and optical MEMS.

Handbook of Nanotechnology Applications Kajornsak Faungnawakij 2020-10-22 Handbook of Nanotechnology Applications: Environment, Energy, Agriculture and Medicine presents a comprehensive overview on recent developments and prospects surrounding nanotechnology use in water/wastewater separation and purification, energy storage and conversion, agricultural and food process, and effective diagnoses and treatments in medical fields. The book includes detailed overviews of nanotechnology, including nanofiltration membrane for water/wastewater treatment, nanomedicine and nanosensor development for medical implementation, advanced nanomaterials of different structural dimensions (0D, 1D, 2D and 3D) for energy applications, as well as food and agricultural utilization. Other sections discuss the challenges of lab-based research transitioning towards practical industrial use. Helps scientists and researchers quickly learn and understand the key role of nanotechnology in important industrial applications.

Enabling Technology for MEMS and Nanodevices Henry Baltes 2013-03-27 Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering successes and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. Sensor systems, microreactors, nanostructures, nanomachines, functional surfaces, integrated optics, displays, communications technology, biochips, human/machine interfaces, prosthetics, miniaturized medical and surgery equipment and many more opportunities are being explored. This new series, Advanced Micro & Nanosystems, provides cutting-edge reviews from top authors on technologies, devices and advanced systems from the micro and nano worlds.

Confocal Raman Microscopy Jan Toporski
This second edition provides a cutting-edge overview of physical, technical, and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

Scanning Electrochemical Microscopy, Allen J. Bard
2001-04-18 Scanning Electrochemical Microscopy describes the theory and operating principles of scanning electrochemical microscopy (SECM), including instrumentation, tip preparation, imaging techniques and potentiometric probes. The book explores applications relevant to electron transfer reactions, reaction kinetics, chemical events at interfaces, biologica

VLSI Design, Esteban Tello-Cuautle 2012-01-20
This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc.

Plasmonic Sensors and their Applications, Adil Denizli
2021-10-25 Plasmonic Sensors and their Applications: A practically-focused reference and guide on the use of plasmonic sensing as a faster and cheaper alternative to conventional sensing platforms. Plasmons, the collective oscillations of electrons occurring at the interface between any two materials, are sensitive to changes in dielectric properties near metal surfaces. Plasmonic sensors enable the real-time study of unique surface properties by monitoring the effect of the material interaction at the sensor surface. Plasmonic sensing techniques offer fast, label-free analysis, and hold advantages over labelling techniques such as ELISA (enzyme-linked immunosorbent assay). Plasmonic Sensors and their Applications examines the development and use of highly sensitive and selective plasmonic sensing platforms in chemistry, biotechnology, and medicine. Contributions by an international panel of experts provide timely and in-depth coverage of both real-world applications and academic research in the dynamic field. The authors describe advances in nanotechnology, polymer chemistry, and biomedicine, explore new and emerging applications of plasmonic sensing, discuss future trends and potential research directions, and more. This authoritative volume: Demonstrates why plasmonic sensing is a profitable method for easy and label-free analysis in real-time, Covers a variety of applications of plasmonic sensors, such as disease diagnostics, vitamin detection, and detection of chemical and biological warfare agents, Includes a brief introduction to the history and development of plasmonic sensors, Provides concise theory and background for every application covered in the text.

Plasmonic Sensors and their Applications is an invaluable resource for analytical chemists, biocatalysts, biotechnologists, proteins and surface chemists, and advanced students of biotechnology.

Synthesis and Applications of Nanocarbons, Jean-Charles Arnault 2020-09-21
A crucial overview of the cutting-edge in nanocarbon research and applications in Synthesis and Applications of Nanocarbons, the distinguished authors have set out to discuss fundamental topics, synthetic approaches, materials challenges, and various applications of this rapidly developing technology. Nanocarbons have recently emerged as a promising material for chemical, energy, environmental, and medical applications because of their unique chemical properties and their rich surface chemistries. This book is the latest entry in the Wiley book series Nanocarbon Chemistry and Interfaces and seeks to comprehensively address many of the newly surfacing areas of controversy and development in the field. This book introduces foundational concepts in nanocarbon technology, hybrids, and applications, while also covering the most recent and cutting-edge developments in this area of study. Synthesis and Applications of Nanocarbons addresses new discoveries in the field, including: nanodiamonds, onion-like carbons, carbon nanotubes, fullerenes, carbon dots, carbon fibers, graphene, and aerographite. This book provides a transversal view of the various nanocarbon materials and hybrids and helps to share knowledge between the communities of each material and hybrid type.

Nanotechnology-Enabled Sensors, Kourosh Kalantar-Zadeh 2007-09-19
Nanotechnology provides tools for creating functional materials, devices, and systems by controlling materials at the atomic and molecular scales and making use of novel properties and phenomena. Nanotechnology-enabled sensors find applications in several fields such as health and safety, medicine, process control and diagnostics. This book provides the reader with information on how nanotechnology enabled sensors are currently being used and how they will be used in the future in such diverse fields as communications, building and facilities, medicine, safety, and security, including both homeland defense and military operations.
Thermoelectric Energy Conversion

Diana Davila Pineda

2017-12-04 The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.

Molecular Networks

Mir Wais Hosseini 2009-06-20 Ongoing developments in nanofabrication technology and the availability of novel materials have led to the emergence and evolution of new topics for mesoscopic research, including scanning-tunneling microscopic studies of few-atom metallic clusters, discrete energy level spectroscopy, the prediction of Kondo-type physics in the transport properties of quantum dots, time dependent effects, and the properties of interacting systems, e.g. of Luttinger liquids. The overall understanding of each of these areas is still incomplete; nevertheless, with the foundations laid by studies in the more traditional systems there is no doubt that these new areas will advance mesoscopic electron transport to a new phenomenological level, both experimentally and theoretically. Mesoscopic Electron Transport highlights selected areas in the field, provides a comprehensive review of such systems, and also serves as an introduction to the new and developing areas of mesoscopic electron transport.

Carbon Nanotube Devices

2008-05-05 Following on from the first AMN volume, this handy reference and textbook examines the topic of nanosystem design in further detail. It explains the physical and chemical basics behind the design and fabrication of nanodevices, covering all important, recent advances in the field, while introducing nanosystems to less experienced readers. The result is an important source for a fast, accurate overview of the state of the art of nanosystem realization, summarizing further important literature.

Nonlinear Dynamics of Nanosystems

Günter Radons

2010-01-12 A discussion of the fundamental changes that occur when dynamical systems from the fields of nonlinear optics, solids, hydrodynamics and biophysics are scaled down to nanosize. The authors are leading scientists in the field and each of their contributions provides a broader introduction to the specific area of research. In so doing, they include both the experimental and theoretical point of view, focusing especially on the effects on the nonlinear dynamical behavior of scaling, stochasticity and quantum mechanics. For everybody working on the synthesis and integration of nanoscopic devices who sooner or later will have to learn how to deal with nonlinear effects.

CMOS - MEMS

Henry Baltes 2008-07-11 Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering successes and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. Sensor systems, microreactors, nanostructures, nanomachines, functional surfaces, integrated optics, displays, communications technology, biochips, human/machine interfaces, prosthetics, miniaturized medical and surgery equipment and many more opportunities are being explored. This new series, Advanced Micro and Nano Systems, provides cutting-edge reviews from top authors on technologies, devices and advanced systems from the micro and nano worlds.

Toxic Gas Sensors and Biosensors

Inamuddin 2021-02-15 The book focuses on novel sensor materials and their environmental and healthcare applications, such as NO2 detection, toxic gas and biosensing, hydrazine determination, glucose sensing and the detection of toxins and pollutants on surfaces. Materials covered include catalytic nanomaterials, metal oxides, perovskites, zeolites, spinels, graphene-based gas sensors, CNT/Ni nanocomposites, glucose biosensors, single and multi-layered stacked MXenes, black phosphorus, transition metal dichalcogenides and P3OT thin films. Keywords: Toxic Gas Sensors, Biosensors, Nitrogen Dioxide Detection, Hydrazine Determination, Glucose Sensing, Catalytic Nanomaterials, Metal Oxides, Perovskites, Zeolites, Spinels, Graphene-based Gas Sensors, CNT/Ni Nanocomposites, MXenes, Black Phosphorus, Transition Metal Dichalcogenides, P3OT Thin Films.

Advanced Nanoelectronics

Muhammad Mustafa Hussain 2019-01-04 Brings novel insights to a vibrant research area with high application potential: covering materials, physics, architecture, and integration aspects of future generation CMOS electronics technology. Over the last four decades we have seen tremendous growth in semiconductor electronics. This growth has been fueled by the matured complementary metal oxide semiconductor (CMOS) technology. This comprehensive book captures the novel device options in CMOS technology that can be realized using non-silicon semiconductors. It discusses germanium, III-V materials, carbon nanotubes and graphene as semiconducting materials for three-dimensional field-
effect transistors. It also covers non-conventional materials such as nanowires and nanotubes. Additionally, nanoelectromechanical switches-based mechanical relays and wide bandgap semiconductor-based terahertz electronics are reviewed as essential add-on electronics for enhanced communication and computational capabilities. Advanced Nanoelectronics: Post-Silicon Materials and Devices begins with a discussion of the future of CMOS. It continues with comprehensive chapter coverage of: nanowire field effect transistors; two-dimensional materials for electronic applications; the challenges and breakthroughs of the integration of germanium into modern CMOS; carbon nanotube logic technology; tunnel field effect transistors; energy efficient computing with negative capacitance; spin-based devices for logic, memory and non-Boolean architectures; and terahertz properties and applications of GAN. -Puts forward novel approaches for future, state-of-the-art, nanoelectronic devices -Discusses emerging materials and architectures such as alternate channel material like germanium, gallium nitride, 1D nanowires/tubes, 2D graphene, and other dichalcogenide materials and ferroelectrics -Examines new physics such as spintronics, negative capacitance, quantum computing, and 3D-IC technology -Brings together the latest developments in the field for easy reference - Enables academic and R&D researchers in semiconductors to “think outside the box” and explore beyond silica An important resource for future generation CMOS electronics technology, Advanced Nanoelectronics: Post-Silicon Materials and Devices will appeal to materials scientists, semiconductor physicists, semiconductor industry, and electrical engineers.

Harmonic Balance for Nonlinear Vibration Problems Malte Krack 2019-03-23 This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and postgraduate students, but the book may also be beneficial for research experts and practitioners in industry.

Nonlinear Dynamics and Complexity Valentin Afraimovich 2013-11-22 This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

Nanotechnology Research Directions: IWGN Workshop Report R.S. Williams 2013-03-09 energy production, environmental management, transportation, communication, computation, and education. As the twenty-first century unfolds, nanotechnology’s impact on the health, wealth, and security of the world’s people is expected to be at least as significant as the combined influences in this century of antibiotics, the integrated circuit, and human-made polymers. Dr. Neal Lane, Advisor to the President for Science and Technology and former National Science Foundation (NSF) director, stated at a Congressional hearing in April 1998, “If we were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Recognizing this potential, the White House Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB) have issued a joint memorandum to Federal agency heads that identifies nanotechnology as a research priority area for Federal investment in fiscal year 2001. This report charts “Nanotechnology Research Directions,” as developed by the Interagency Working Group on Nano Science, Engineering, and Technology (IWGN) of the National Science and Technology Council (NSTC). The report incorporates the views of leading experts from government, academia, and the private sector. It reflects the consensus reached at an IWGN-sponsored workshop held on January 27-29, 1999, and detailed in contributions submitted thereafter by members of the V. S. science and engineering community. (See Appendix A for a list of contributors.

Electronic Properties of Carbon Nanotubes Leroy Sidney 2016-04-01 Carbon nanotubes (CNTs) are tubular cylinders of carbon atoms that have extraordinary mechanical, electrical, thermal, optical and chemical properties. CNTs typically have diameters ranging from 1 nanometer (nm) up to 50 nm. A nanometer is one thousand millionth of a meter. Typical CNT lengths are several microns; several thousand nanometers long; by contrast, Nanocomp’s produced bundles are measured in millimeters, thousands of times longer than all other commercially produced CNTs. They take the form of cylindrical carbon molecules and have novel properties that make them potentially useful in a wide variety of applications in nanotechnology, electronics, optics and other fields.
of materials science. They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. In the powdery format offered by all CNT producers (but for NTI), applications are limited to the properties possible by this form factor. E.g., additive active ingredients in semiconductors, liquid crystal displays (LCDs), sensors, and other uses in which these powders add some level of functional performance. Due to its fiber length and its form factors, NTI delivers strength and conductivity unlike any other commercial CNT producer, and so can address a much broader array of applications for which its material rivals copper and aluminum in conductivity, and steel, aluminum, carbon fibers and glass composites where strength and lightweight matter. Carbon nanotubes have been a subject of exhaustive research for a wide range of applications. The purpose of this book entitled Properties of Carbon Nanotubes is to give in-depth understanding of the physics and electronic structure of carbon nanotubes. This book discusses fabrication techniques followed by an analysis on the physical properties of carbon nanotubes, including density of states and electronic structures. Eventually, the book follows a significant amount of work in the industry applications of carbon nanotubes.

Single-Walled Carbon Nanotubes Yan Li 2019-05-16 The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.